direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C22×C4, C12⋊3C23, C6.2C24, D6.9C23, C23.39D6, Dic3⋊3C23, C3⋊1(C23×C4), C6⋊1(C22×C4), C2.1(S3×C23), C4○(C22×Dic3), Dic3○(C22×C4), (C22×C12)⋊10C2, (C2×C12)⋊14C22, (S3×C23).3C2, (C2×C6).63C23, (C2×Dic3)⋊12C22, (C22×Dic3)⋊10C2, C22.29(C22×S3), (C22×C6).44C22, (C22×S3).35C22, C4○(S3×C2×C4), (C2×C4)○(C4×S3), (C2×C6)⋊6(C2×C4), (C2×C4)○2(C2×Dic3), (C2×C4)○(C22×Dic3), (C22×C4)○(C2×Dic3), (C22×C4)○(C22×Dic3), (C2×C4)○(S3×C2×C4), SmallGroup(96,206)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C22×C4 |
Generators and relations for S3×C22×C4
G = < a,b,c,d,e | a2=b2=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 418 in 236 conjugacy classes, 145 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, C2×C6, C22×C4, C22×C4, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C23×C4, S3×C2×C4, C22×Dic3, C22×C12, S3×C23, S3×C22×C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C24, C4×S3, C22×S3, C23×C4, S3×C2×C4, S3×C23, S3×C22×C4
(1 36)(2 33)(3 34)(4 35)(5 27)(6 28)(7 25)(8 26)(9 31)(10 32)(11 29)(12 30)(13 39)(14 40)(15 37)(16 38)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 24)(2 21)(3 22)(4 23)(5 39)(6 40)(7 37)(8 38)(9 43)(10 44)(11 41)(12 42)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 47)(34 48)(35 45)(36 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 47 10)(6 48 11)(7 45 12)(8 46 9)(21 32 27)(22 29 28)(23 30 25)(24 31 26)(33 44 39)(34 41 40)(35 42 37)(36 43 38)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)(25 32)(26 29)(27 30)(28 31)(33 35)(34 36)(37 44)(38 41)(39 42)(40 43)(45 47)(46 48)
G:=sub<Sym(48)| (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,24)(2,21)(3,22)(4,23)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,47)(34,48)(35,45)(36,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,47,10)(6,48,11)(7,45,12)(8,46,9)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,44,39)(34,41,40)(35,42,37)(36,43,38), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,32)(26,29)(27,30)(28,31)(33,35)(34,36)(37,44)(38,41)(39,42)(40,43)(45,47)(46,48)>;
G:=Group( (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,24)(2,21)(3,22)(4,23)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,47)(34,48)(35,45)(36,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,47,10)(6,48,11)(7,45,12)(8,46,9)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,44,39)(34,41,40)(35,42,37)(36,43,38), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,32)(26,29)(27,30)(28,31)(33,35)(34,36)(37,44)(38,41)(39,42)(40,43)(45,47)(46,48) );
G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,27),(6,28),(7,25),(8,26),(9,31),(10,32),(11,29),(12,30),(13,39),(14,40),(15,37),(16,38),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,24),(2,21),(3,22),(4,23),(5,39),(6,40),(7,37),(8,38),(9,43),(10,44),(11,41),(12,42),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,47),(34,48),(35,45),(36,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,47,10),(6,48,11),(7,45,12),(8,46,9),(21,32,27),(22,29,28),(23,30,25),(24,31,26),(33,44,39),(34,41,40),(35,42,37),(36,43,38)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24),(25,32),(26,29),(27,30),(28,31),(33,35),(34,36),(37,44),(38,41),(39,42),(40,43),(45,47),(46,48)]])
S3×C22×C4 is a maximal subgroup of
C22.58(S3×D4) (C2×C4)⋊9D12 D6⋊C42 D6⋊(C4⋊C4) D6⋊C4⋊C4 D6⋊M4(2) C24.23D6 C4⋊(D6⋊C4) D6⋊C4⋊6C4 D6⋊6M4(2) C42⋊10D6 C42⋊14D6 C4⋊C4⋊21D6 C4⋊C4⋊26D6 C4⋊C4⋊28D6 (C2×D4)⋊43D6
S3×C22×C4 is a maximal quotient of
C24.35D6 C6.82+ 1+4 C42.87D6 C42⋊9D6 C42.188D6 C42.91D6 C42⋊13D6 C42.108D6 C42.125D6 C42.126D6 M4(2)⋊26D6 M4(2)⋊28D6
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3 | 4A | ··· | 4H | 4I | ··· | 4P | 6A | ··· | 6G | 12A | ··· | 12H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | C4×S3 |
kernel | S3×C22×C4 | S3×C2×C4 | C22×Dic3 | C22×C12 | S3×C23 | C22×S3 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 16 | 1 | 6 | 1 | 8 |
Matrix representation of S3×C22×C4 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 |
0 | 0 | 1 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 1 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[8,0,0,0,0,5,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,1,1] >;
S3×C22×C4 in GAP, Magma, Sage, TeX
S_3\times C_2^2\times C_4
% in TeX
G:=Group("S3xC2^2xC4");
// GroupNames label
G:=SmallGroup(96,206);
// by ID
G=gap.SmallGroup(96,206);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,69,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations