Copied to
clipboard

G = S3xC22xC4order 96 = 25·3

Direct product of C22xC4 and S3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3xC22xC4, C12:3C23, C6.2C24, D6.9C23, C23.39D6, Dic3:3C23, C3:1(C23xC4), C6:1(C22xC4), C2.1(S3xC23), C4o(C22xDic3), Dic3o(C22xC4), (C22xC12):10C2, (C2xC12):14C22, (S3xC23).3C2, (C2xC6).63C23, (C2xDic3):12C22, (C22xDic3):10C2, C22.29(C22xS3), (C22xC6).44C22, (C22xS3).35C22, C4o(S3xC2xC4), (C2xC4)o(C4xS3), (C2xC6):6(C2xC4), (C2xC4)o2(C2xDic3), (C2xC4)o(C22xDic3), (C22xC4)o(C2xDic3), (C22xC4)o(C22xDic3), (C2xC4)o(S3xC2xC4), SmallGroup(96,206)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC22xC4
C1C3C6D6C22xS3S3xC23 — S3xC22xC4
C3 — S3xC22xC4
C1C22xC4

Generators and relations for S3xC22xC4
 G = < a,b,c,d,e | a2=b2=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 418 in 236 conjugacy classes, 145 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C23, C23, Dic3, C12, D6, C2xC6, C22xC4, C22xC4, C24, C4xS3, C2xDic3, C2xC12, C22xS3, C22xC6, C23xC4, S3xC2xC4, C22xDic3, C22xC12, S3xC23, S3xC22xC4
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C24, C4xS3, C22xS3, C23xC4, S3xC2xC4, S3xC23, S3xC22xC4

Smallest permutation representation of S3xC22xC4
On 48 points
Generators in S48
(1 36)(2 33)(3 34)(4 35)(5 27)(6 28)(7 25)(8 26)(9 31)(10 32)(11 29)(12 30)(13 39)(14 40)(15 37)(16 38)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 24)(2 21)(3 22)(4 23)(5 39)(6 40)(7 37)(8 38)(9 43)(10 44)(11 41)(12 42)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 47)(34 48)(35 45)(36 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 47 10)(6 48 11)(7 45 12)(8 46 9)(21 32 27)(22 29 28)(23 30 25)(24 31 26)(33 44 39)(34 41 40)(35 42 37)(36 43 38)
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)(25 32)(26 29)(27 30)(28 31)(33 35)(34 36)(37 44)(38 41)(39 42)(40 43)(45 47)(46 48)

G:=sub<Sym(48)| (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,24)(2,21)(3,22)(4,23)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,47)(34,48)(35,45)(36,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,47,10)(6,48,11)(7,45,12)(8,46,9)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,44,39)(34,41,40)(35,42,37)(36,43,38), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,32)(26,29)(27,30)(28,31)(33,35)(34,36)(37,44)(38,41)(39,42)(40,43)(45,47)(46,48)>;

G:=Group( (1,36)(2,33)(3,34)(4,35)(5,27)(6,28)(7,25)(8,26)(9,31)(10,32)(11,29)(12,30)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,24)(2,21)(3,22)(4,23)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,47)(34,48)(35,45)(36,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,47,10)(6,48,11)(7,45,12)(8,46,9)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,44,39)(34,41,40)(35,42,37)(36,43,38), (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,32)(26,29)(27,30)(28,31)(33,35)(34,36)(37,44)(38,41)(39,42)(40,43)(45,47)(46,48) );

G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,27),(6,28),(7,25),(8,26),(9,31),(10,32),(11,29),(12,30),(13,39),(14,40),(15,37),(16,38),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,24),(2,21),(3,22),(4,23),(5,39),(6,40),(7,37),(8,38),(9,43),(10,44),(11,41),(12,42),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,47),(34,48),(35,45),(36,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,47,10),(6,48,11),(7,45,12),(8,46,9),(21,32,27),(22,29,28),(23,30,25),(24,31,26),(33,44,39),(34,41,40),(35,42,37),(36,43,38)], [(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24),(25,32),(26,29),(27,30),(28,31),(33,35),(34,36),(37,44),(38,41),(39,42),(40,43),(45,47),(46,48)]])

S3xC22xC4 is a maximal subgroup of
C22.58(S3xD4)  (C2xC4):9D12  D6:C42  D6:(C4:C4)  D6:C4:C4  D6:M4(2)  C24.23D6  C4:(D6:C4)  D6:C4:6C4  D6:6M4(2)  C42:10D6  C42:14D6  C4:C4:21D6  C4:C4:26D6  C4:C4:28D6  (C2xD4):43D6
S3xC22xC4 is a maximal quotient of
C24.35D6  C6.82+ 1+4  C42.87D6  C42:9D6  C42.188D6  C42.91D6  C42:13D6  C42.108D6  C42.125D6  C42.126D6  M4(2):26D6  M4(2):28D6

48 conjugacy classes

class 1 2A···2G2H···2O 3 4A···4H4I···4P6A···6G12A···12H
order12···22···234···44···46···612···12
size11···13···321···13···32···22···2

48 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4S3D6D6C4xS3
kernelS3xC22xC4S3xC2xC4C22xDic3C22xC12S3xC23C22xS3C22xC4C2xC4C23C22
# reps112111161618

Matrix representation of S3xC22xC4 in GL4(F13) generated by

12000
0100
0010
0001
,
12000
01200
0010
0001
,
8000
0500
0080
0008
,
1000
0100
00012
00112
,
1000
0100
00121
0001
G:=sub<GL(4,GF(13))| [12,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[8,0,0,0,0,5,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,1,1] >;

S3xC22xC4 in GAP, Magma, Sage, TeX

S_3\times C_2^2\times C_4
% in TeX

G:=Group("S3xC2^2xC4");
// GroupNames label

G:=SmallGroup(96,206);
// by ID

G=gap.SmallGroup(96,206);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,69,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<